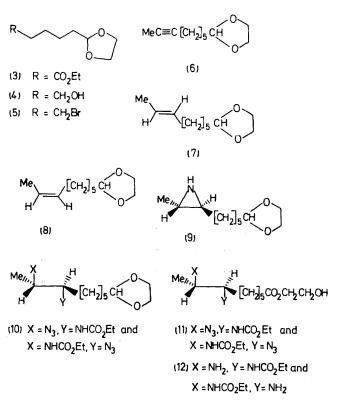

Novel Stereospecific Synthesis of (\pm) -Dethiobiotin

By RONALD J. PARRY,* MICHAEL G. KUNITANI, and ORRIN VIELE, III (Department of Chemistry, Brandeis University, Waltham, Massachusetts)

Summary A new stereospecific synthesis of dethiobiotin (2), the biological precursor of the vitamin biotin (1), is described.


The immediate precursor of the vitamin (+)-biotin (1) in a number of microbial systems has been found¹ to be (+)dethiobiotin (2). As part of an investigation of biotin formation and metabolism, we attempted to prepare several specifically tritiated forms of dethiobiotin by using published syntheses² of this compound. However, these attempts led to scrambling of the tritium labels. We have therefore developed a new synthesis of (\pm) -dethiobiotin which will be useful for labelling purposes. This approach differs from prior syntheses of (2) in that the *cis* relationship between the substituents on the imidazolone ring is achieved by means other than the catalytic reduction of an unsaturated imidazolone.

Rosemund reduction of 5-ethoxycarbonyl-n-pentanoyl chloride³ followed by immediate acetalization of the ester aldehyde yielded the acetal ester (3) (62%), v_{max} 1740 cm⁻¹, δ 1.22 (3H, t, J 7 Hz, OCH₂Me), 4.12 (2H, q, J 7 Hz,

 OCH_2Me), and 4.85 (1H, t, J 4.3 Hz, acetal-H). Treatment of (3) with LiAlH₄ afforded the acetal alcohol (4) (90%)which was converted by PPh3 and CBr4 into the bromoacetal (5) (75%), δ 3.41 (2H, t, J 6.5 Hz, CH₂Br) and 4.82 (1H, t, acetal-H). Alkylation of propyne with (5) produced the acetylenic acetal (6) (60%), δ 1.73 (3H, t, J 2.5 Hz, MeC = CCH₂) and 4.80 (1H, t, acetal H). Na-NH₃ reduction of (6) led to the trans-acetal olefin (7) (93%) with an i.r. absorption (965 cm^{-1}) characteristic of a trans-substituted doublebond.⁴ In order to provide additional evidence for the trans geometry of (7), the *cis*-acetal olefin (8) was synthesized by reduction (Lindlar) of the acetylene (6). The cis-olefin (8) exhibited i.r. absorption of 700 cm^{-1} as expected for a *cis*substituted double-bond,⁴ and g.l.c. analysis of the transolefin (7) shows that none of the *cis*-olefin (8) was present. The trans-acetal olefin was subsequently used as the olefinic component of a stereospecific aziridine synthesis devised by Hassner.⁵ Sequential treatment of (7) with IN_3 , $P(OEt)_3$, and $LiAlH_4$ afforded the trans-substituted aziridine (9) (70% from 7), δ 1·17 (3H, d, J 5 Hz, aziridinyl-Me) and 4·80 (1H, t, acetal-H). Ring-opening of the aziridine with NaNa in acidic, aqueous alcohol⁶ followed by acylation with ClCO₂Et yielded a mixture of two isomeric azido-urethanes (10) (85%), v_{max} 2110 and 1725 cm⁻¹, δ 1.25 (3H, t, J 7 Hz, OCH₂Me) and 4.12 (2H, q, J 7 Hz, OCH₂Me). Ozonolysis⁷ of the mixture (10) at -78 °C in MeOH cleanly produced a mixture of two isomeric ethylene glycol esters (11), v_{max} 2110, 1725, and 1715 cm⁻¹, δ 2.31 (2H, t, J 7 Hz, CH₂CO₂), and 3.80 (2H, t, OCH₂CH₂OH). Catalytic reduction of

the ester mixture (11) gave a mixture of two isomeric amino esters (12) which was treated with NaOEt in EtOH to afford

the ethyl ester of (\pm) -dethiobiotin (60% from 10). Alkaline hydrolysis of this ester yielded crystalline (\pm) -dethiobiotin whose identity was established by comparison with a sample of (\pm) -dethiobiotin synthesized via previously published methods. The two samples of (\pm) -(2) were identical in all respects, including mixed m.p.

We thank the National Science Foundation for financial support.

(Received, 13th February 1975; Com. 180.)

- ¹ See H.-C. Li, D. B. McCormick, and L. D. Wright, J. Biol. Chem., 1968, 243, 6442, and the references cited therein.
 ² J.-P. Bourquin, O. Schnider, and A. Grüssner, Helv. Chim. Acta, 1945, 28, 528; J. L. Wood and V. du Vigneaud, J. Amer. Chem. Soc., 1945, 67, 210; R. Duschinsky and L. A. Dolan, *ibid.*, p. 2079; G. Swain, J. Chem. Soc., 1948, 1552.
 ³ G. B. Brown, M. D. Armstrong, A. W. Moyer, W. P. Anslow, Jr., B. R. Baker, M. V. Querry, S. Berstein, and S. R. Safir, J. Org. Chem., 1947, 12, 160.
 - ¹ K. Nakanishi, 'Infrared Absorption Spectroscopy,' Holden-Day, San Francisco, 1964, p. 24.
 ⁵ A. Hassner and J. E. Galle, J. Amer. Chem. Soc., 1970, 92, 3733.
 ⁶ G. Swift and D. Swern, J. Org. Chem., 1967, 32, 511.
 ⁷ P. Deslongchamps and C. Moreau, Canad. J. Chem., 1971, 49, 2465.